On negative eigenvalues of two‐dimensional Schrödinger operators

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the number of eigenvalues of Schrödinger operators with complex potentials

We study the eigenvalues of Schrödinger operators with complex potentials in odd space dimensions. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.

متن کامل

On Extended Eigenvalues of Operators

A complex number λ is an extended eigenvalue of an operator A if there is a nonzero operator X such that AX = λXA. We characterize the the set of extended eigenvalues for operators acting on finite dimensional spaces, finite rank operators, Jordan blocks, and C0 contractions. We also describe the relationship between the extended eigenvalues of an operator A and its powers. We derive some appli...

متن کامل

Convergence of Schrödinger Operators

For a large class, containing the Kato class, of real-valued Radon measures m on R the operators −∆ + ε∆ + m in L(R, dx) tend to the operator −∆ +m in the norm resolvent sense, as ε tends to zero. If d ≤ 3 and a sequence (μn) of finite real-valued Radon measures on R converges to the finite real-valued Radon measure m weakly and, in addition, supn∈N μ ± n (R) < ∞, then the operators −∆ + ε∆ + μ...

متن کامل

Eigenvalues of Operators with Gaps

This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.

متن کامل

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2013

ISSN: 0024-6115,1460-244X

DOI: 10.1112/plms/pdt036